Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The protective role of metformin in autophagic status in peripheral blood mononuclear cells of type 2 diabetic patients.

Identifieur interne : 000026 ( Main/Exploration ); précédent : 000025; suivant : 000027

The protective role of metformin in autophagic status in peripheral blood mononuclear cells of type 2 diabetic patients.

Auteurs : Debalina Bhattacharya [Inde] ; Moumita Dutta [Inde] ; Mainak Mukhopadhyay [Inde] ; Maitree Bhattacharyya [Inde] ; Subhankar Chowdhury [Inde] ; Parimal Karmakar [Inde]

Source :

RBID : pubmed:32237184

Abstract

Autophagy plays an important role in the pathophysiology of type 2 diabetes (T2D). Metformin is the most common antidiabetic drug. The main objective of this study was to explore the molecular mechanism of metformin in starvation-induced autophagy in peripheral blood mononuclear cells (PBMCs) of type 2 diabetic patients. PBMCs were isolated from 10 diabetic patients and 7 non-diabetic healthy volunteers. The autophagic puncta and markers were measured with the help of monodansylcadaverine staining and western blot. Additionally, transmission electron microscopy was also performed. No significant changes were observed in the initial autophagy marker protein levels in PBMCs of T2D after metformin treatment though diabetic PBMCs showed a high level of phospho-mammalian target of rapamycin, p62 and reduced expression of phospho-AMP-activated protein kinase and lysosomal membrane-associated protein 2, indicating a defect in autophagy. Also, induction of autophagy by tunicamycin resulted in apoptosis in diabetic PBMCs as observed by caspase-3 cleavage and reduced expression of Bcl2. Inhibition of autophagy by bafilomycin rendered consistent expression of p62 indicating a defect in the final process of autophagy. Further, electron microscopic studies also confirmed massive vacuole overload and a sign of apoptotic cell death in PBMCs of diabetic patients, whereas metformin treatment reduced the number of autophagic vacuoles perhaps by lysosomal fusion. Thus, our results indicate that defective autophagy in T2D is associated with the fusion process of lysosomes which could be overcome by metformin.

DOI: 10.1002/cbin.11355
PubMed: 32237184


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The protective role of metformin in autophagic status in peripheral blood mononuclear cells of type 2 diabetic patients.</title>
<author>
<name sortKey="Bhattacharya, Debalina" sort="Bhattacharya, Debalina" uniqKey="Bhattacharya D" first="Debalina" last="Bhattacharya">Debalina Bhattacharya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Maulana Azad College, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Microbiology, Maulana Azad College, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dutta, Moumita" sort="Dutta, Moumita" uniqKey="Dutta M" first="Moumita" last="Dutta">Moumita Dutta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Electron Microscopy, ICMR-NICED, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Electron Microscopy, ICMR-NICED, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mukhopadhyay, Mainak" sort="Mukhopadhyay, Mainak" uniqKey="Mukhopadhyay M" first="Mainak" last="Mukhopadhyay">Mainak Mukhopadhyay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, JIS University, Agarpara, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, JIS University, Agarpara, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhattacharyya, Maitree" sort="Bhattacharyya, Maitree" uniqKey="Bhattacharyya M" first="Maitree" last="Bhattacharyya">Maitree Bhattacharyya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, University of Calcutta, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chowdhury, Subhankar" sort="Chowdhury, Subhankar" uniqKey="Chowdhury S" first="Subhankar" last="Chowdhury">Subhankar Chowdhury</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Endocrinology & Metabolism, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Endocrinology & Metabolism, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karmakar, Parimal" sort="Karmakar, Parimal" uniqKey="Karmakar P" first="Parimal" last="Karmakar">Parimal Karmakar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32237184</idno>
<idno type="pmid">32237184</idno>
<idno type="doi">10.1002/cbin.11355</idno>
<idno type="wicri:Area/Main/Corpus">000095</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000095</idno>
<idno type="wicri:Area/Main/Curation">000095</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000095</idno>
<idno type="wicri:Area/Main/Exploration">000095</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The protective role of metformin in autophagic status in peripheral blood mononuclear cells of type 2 diabetic patients.</title>
<author>
<name sortKey="Bhattacharya, Debalina" sort="Bhattacharya, Debalina" uniqKey="Bhattacharya D" first="Debalina" last="Bhattacharya">Debalina Bhattacharya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Maulana Azad College, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Microbiology, Maulana Azad College, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dutta, Moumita" sort="Dutta, Moumita" uniqKey="Dutta M" first="Moumita" last="Dutta">Moumita Dutta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Electron Microscopy, ICMR-NICED, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Electron Microscopy, ICMR-NICED, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mukhopadhyay, Mainak" sort="Mukhopadhyay, Mainak" uniqKey="Mukhopadhyay M" first="Mainak" last="Mukhopadhyay">Mainak Mukhopadhyay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, JIS University, Agarpara, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, JIS University, Agarpara, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhattacharyya, Maitree" sort="Bhattacharyya, Maitree" uniqKey="Bhattacharyya M" first="Maitree" last="Bhattacharyya">Maitree Bhattacharyya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, University of Calcutta, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chowdhury, Subhankar" sort="Chowdhury, Subhankar" uniqKey="Chowdhury S" first="Subhankar" last="Chowdhury">Subhankar Chowdhury</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Endocrinology & Metabolism, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Endocrinology & Metabolism, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karmakar, Parimal" sort="Karmakar, Parimal" uniqKey="Karmakar P" first="Parimal" last="Karmakar">Parimal Karmakar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal</wicri:regionArea>
<wicri:noRegion>West Bengal</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell biology international</title>
<idno type="eISSN">1095-8355</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Autophagy plays an important role in the pathophysiology of type 2 diabetes (T2D). Metformin is the most common antidiabetic drug. The main objective of this study was to explore the molecular mechanism of metformin in starvation-induced autophagy in peripheral blood mononuclear cells (PBMCs) of type 2 diabetic patients. PBMCs were isolated from 10 diabetic patients and 7 non-diabetic healthy volunteers. The autophagic puncta and markers were measured with the help of monodansylcadaverine staining and western blot. Additionally, transmission electron microscopy was also performed. No significant changes were observed in the initial autophagy marker protein levels in PBMCs of T2D after metformin treatment though diabetic PBMCs showed a high level of phospho-mammalian target of rapamycin, p62 and reduced expression of phospho-AMP-activated protein kinase and lysosomal membrane-associated protein 2, indicating a defect in autophagy. Also, induction of autophagy by tunicamycin resulted in apoptosis in diabetic PBMCs as observed by caspase-3 cleavage and reduced expression of Bcl2. Inhibition of autophagy by bafilomycin rendered consistent expression of p62 indicating a defect in the final process of autophagy. Further, electron microscopic studies also confirmed massive vacuole overload and a sign of apoptotic cell death in PBMCs of diabetic patients, whereas metformin treatment reduced the number of autophagic vacuoles perhaps by lysosomal fusion. Thus, our results indicate that defective autophagy in T2D is associated with the fusion process of lysosomes which could be overcome by metformin.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32237184</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8355</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>44</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Cell biology international</Title>
<ISOAbbreviation>Cell Biol Int</ISOAbbreviation>
</Journal>
<ArticleTitle>The protective role of metformin in autophagic status in peripheral blood mononuclear cells of type 2 diabetic patients.</ArticleTitle>
<Pagination>
<MedlinePgn>1628-1639</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cbin.11355</ELocationID>
<Abstract>
<AbstractText>Autophagy plays an important role in the pathophysiology of type 2 diabetes (T2D). Metformin is the most common antidiabetic drug. The main objective of this study was to explore the molecular mechanism of metformin in starvation-induced autophagy in peripheral blood mononuclear cells (PBMCs) of type 2 diabetic patients. PBMCs were isolated from 10 diabetic patients and 7 non-diabetic healthy volunteers. The autophagic puncta and markers were measured with the help of monodansylcadaverine staining and western blot. Additionally, transmission electron microscopy was also performed. No significant changes were observed in the initial autophagy marker protein levels in PBMCs of T2D after metformin treatment though diabetic PBMCs showed a high level of phospho-mammalian target of rapamycin, p62 and reduced expression of phospho-AMP-activated protein kinase and lysosomal membrane-associated protein 2, indicating a defect in autophagy. Also, induction of autophagy by tunicamycin resulted in apoptosis in diabetic PBMCs as observed by caspase-3 cleavage and reduced expression of Bcl2. Inhibition of autophagy by bafilomycin rendered consistent expression of p62 indicating a defect in the final process of autophagy. Further, electron microscopic studies also confirmed massive vacuole overload and a sign of apoptotic cell death in PBMCs of diabetic patients, whereas metformin treatment reduced the number of autophagic vacuoles perhaps by lysosomal fusion. Thus, our results indicate that defective autophagy in T2D is associated with the fusion process of lysosomes which could be overcome by metformin.</AbstractText>
<CopyrightInformation>© 2020 International Federation for Cell Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bhattacharya</LastName>
<ForeName>Debalina</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Maulana Azad College, Kolkata, West Bengal, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dutta</LastName>
<ForeName>Moumita</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Division of Electron Microscopy, ICMR-NICED, Kolkata, West Bengal, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mukhopadhyay</LastName>
<ForeName>Mainak</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, JIS University, Agarpara, Kolkata, West Bengal, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhattacharyya</LastName>
<ForeName>Maitree</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chowdhury</LastName>
<ForeName>Subhankar</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Endocrinology & Metabolism, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Karmakar</LastName>
<ForeName>Parimal</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BL/14-15/0033</GrantID>
<Agency>University Grants Commission</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cell Biol Int</MedlineTA>
<NlmUniqueID>9307129</NlmUniqueID>
<ISSNLinking>1065-6995</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">autophagy</Keyword>
<Keyword MajorTopicYN="N">lysosomal fusion</Keyword>
<Keyword MajorTopicYN="N">starvation</Keyword>
<Keyword MajorTopicYN="N">transmission electron microscopy</Keyword>
<Keyword MajorTopicYN="N">tunicamycin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32237184</ArticleId>
<ArticleId IdType="doi">10.1002/cbin.11355</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Alberti, K. G., & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Medicine, 15(7), 539-553. https://doi.org/10.1002/(sici)1096-9136(199807)15:7<539::aid-dia668>3.0.co;2-s</Citation>
</Reference>
<Reference>
<Citation>Alexandraki, K. I., Piperi, C., Ziakas, P. D., Apostolopoulos, N. V., Makrilakis, K., … Kalofoutis, A. (2008). Cytokine secretion in long-standing diabetes mellitus type 1 and 2: Associations with low-grade systemic inflammation. Journal of Clinical Immunology, 28(4), 314-321. https://doi.org/10.1007/s10875-007-9164-1</Citation>
</Reference>
<Reference>
<Citation>Alidazeh, S., Mazloom, H., Sadeghi, A., Emamgholipour, S., Golestani, A., … Meshkani, R. (2018). Evidence for the link between defective autophagy and inflammation in peripheral blood mononuclear cells of type 2 diabetic patients. Journal of Physiology and Biochemistry, 74(3), 369-379. https://doi.org/10.1007/s13105-018-0624-2</Citation>
</Reference>
<Reference>
<Citation>Bhansali, S., Bhansali, A., Walia, R., Saikia, U. N., & Dhawan, V. (2017). Alterations in mitochondrial oxidative stress and mitophagy in subjects with prediabetes and type 2 diabetes mellitus. Front Endocrinol (Lausanne), 8, 347. https://doi.org/10.3389/fendo.2017.00347</Citation>
</Reference>
<Reference>
<Citation>Bhattacharya, D., Santra, C. R., Ghosh, A. N., & Karmakar, P. (2014). Differential toxicity of rod and spherical zinc oxide nanoparticles on human peripheral blood mononuclear cells. Journal of Biomedical Nanotechnology, 10(4), 707-716. https://doi.org/10.1166/jbn.2014.1744</Citation>
</Reference>
<Reference>
<Citation>Bradford, M. M. (1976). A rapid and sensitive method for the quantisation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3</Citation>
</Reference>
<Reference>
<Citation>Choi, A. M., Ryter, S. W., & Levine, B. (2013). Autophagy in human health and disease. The New England Journal of Medicine, 368, 651-662. https://doi.org/10.1056/NEJMra1205406</Citation>
</Reference>
<Reference>
<Citation>Dalby, K. N., Tekedereli, I., Lopez-Berestein, G., & Ozpolat, B. (2010). Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy, 6(3), 322-329. https://doi.org/10.4161/auto.6.3.11625</Citation>
</Reference>
<Reference>
<Citation>Deng, H. P., Chai, J. K., Shen, C. A., Zhang, X. B., Ma, L., Sun, T. J., … Dong, N. (2015). Insulin down-regulates the expression of ubiquitin E3 ligases partially by inhibiting the activity and expression of AMP-activated protein kinase in L6 myotubes. Bioscience Reports, 35, e00242. https://doi.org/10.1042/BSR20150017</Citation>
</Reference>
<Reference>
<Citation>Diaz-Morales, N., Iannantuoni, F., Escribano-Lopez, I., Bañuls, C., Rovira-Llopis, S., … Victor, V. M. (2018). Does metformin modulate endoplasmic reticulum stress and autophagy in type 2 diabetic PBMCs? Antioxidants and Redox Signaling, 28(17), 1562-1569. https://doi.org/10.1089/ars.2017.7409</Citation>
</Reference>
<Reference>
<Citation>Diaz-Morales, N., Rovira-Llopis, S., Banuls, C., Lopez-Domenech, S., Escribano-Lopez, I., … Victor, V. M. (2017). Does metformin protect diabetic patients from oxidative stress and leukocyte-endothelium interactions? Antioxidants and Redox Signaling, 27(17), 1439-1445. https://doi.org/10.1089/ars.2017.7122</Citation>
</Reference>
<Reference>
<Citation>Dossou, A. S., & Basu, A. (2019). The emerging roles of mTORC1 in macromanaging autophagy. Cancers, 11(10), 1422-1439. https://doi.org/10.3390/cancers11101422</Citation>
</Reference>
<Reference>
<Citation>Edinger, A. L., & Thompson, C. B. (2004). Death by design: Apoptosis, necrosis and autophagy. Current Opinion in Cell Biology, 16(6), 663-669. https://doi.org/10.1016/j.ceb.2004.09.011</Citation>
</Reference>
<Reference>
<Citation>Eriksson, L., & Nyström, T. (2014). Activation of AMP-activated protein kinase by metformin protects human coronary artery endothelial cells against diabetic lipoapoptosis. Cardiovascular Diabetology, 13, 152-160. https://doi.org/10.1186/PREACCEPT-9581518081340209</Citation>
</Reference>
<Reference>
<Citation>Galdieri, L., Gatla, H., Vancurova, I., & Vancura, A. (2016). Activation of AMP-activated protein kinase by metformin induces protein acetylation in prostate and ovarian cancer cells. Journal of Biological Chemistry, 25, 25154-25166. https://doi.org/10.1074/jbc.M116.742247</Citation>
</Reference>
<Reference>
<Citation>He, C., Zhu, H., Li, H., Zou, M. H., & Zhonglin, X. (2013). Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes, 62(4), 1270-1281. https://doi.org/10.2337/db12-0533</Citation>
</Reference>
<Reference>
<Citation>Islam, M. T., Uddin, M. S., Lucky, K. N., Islam, M. M., Islam, S. M. S., … Amran, S. (2017). Autophagic dysfunction in type 2 diabetes mellitus: Pathophysiology and therapeutic implications. Journal of Diabetes and Metabolism, 8(5), 742-749. https://doi.org/10.4172/2155-6156.1000742</Citation>
</Reference>
<Reference>
<Citation>Kalender, A., Selvaraj, A., Kim, S. Y., Gulati, P., Brule, S., … Thomas, G. (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metabolism, 11(5), 390-401. https://doi.org/10.1016/j.cmet.2010.03.014</Citation>
</Reference>
<Reference>
<Citation>Kaniuk, N. A., Kiraly, M., Bates, H., Vranic, M., Volchuk, A., & Brumell, J. H. (2007). Ubiquinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes, 56(4), 930-939. https://doi.org/10.2337/db06-1160</Citation>
</Reference>
<Reference>
<Citation>Klionsky, D. J., & Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science, 290(5497), 1717-1721. https://doi.org/10.1126/science.290.5497.1717</Citation>
</Reference>
<Reference>
<Citation>Kobayashi, S., Xu, X., Chen, K., & Liang, Q. (2012). Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy, 8(4), 577-592. https://doi.org/10.4161/auto.18980</Citation>
</Reference>
<Reference>
<Citation>Kruse, R., Vind, B. F., Petersson, S. J., Kristensen, J. M., & Hojlund, K. (2015). Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes. Diabetologia, 58(9), 2087-2095. https://doi.org/10.1007/s00125-015-3654-0</Citation>
</Reference>
<Reference>
<Citation>Las, G., & Shirihai, O. S. (2010). The role of autophagy in β-cell lipotoxicity and type 2 diabetes. Diabetes, Obesity and Metabolism, 12(02), 15-19. https://doi.org/10.1111/j.1463-1326.2010.01268.x</Citation>
</Reference>
<Reference>
<Citation>Lee, H. M., Shin, D. M., Yuk, J. M., Shi, G., Choi, D. K., … Jo, E. K. (2011). Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. Journal of Immunology, 186(2), 1248-1258. https://doi.org/10.4049/jimmunol.1001954</Citation>
</Reference>
<Reference>
<Citation>Loos, B., Toit, A., & Hofmeyr, J. H. S. (2014). Defining and measuring autophagosome flux-concept and reality. Autophagy, 10(11), 2087-2096. https://doi.org/10.4161/15548627.2014.973338</Citation>
</Reference>
<Reference>
<Citation>Marchetti, P., Bugliani, M., Lupi, R., Marselli, L., Masini, M., … Cnop, M. (2007). The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia, 50(12), 2486-2494. https://doi.org/10.1007/s00125-007-0816-8</Citation>
</Reference>
<Reference>
<Citation>Martinez-Vicente, M., & Cuervo, A. M. (2007). Autophagy and neurodegeneration: When the cleaning crew goes on strike. The Lancet Neurology, 6(4), 352-361. https://doi.org/10.1016/S1474-4422(07)70076-5</Citation>
</Reference>
<Reference>
<Citation>Masini, M., Bugliani, M., Lupi, R., Del Guerra, S., & Boggi, U. (2009). Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia, 52(6), 1083-1086. https://doi.org/10.1007/s00125-009-1347-2</Citation>
</Reference>
<Reference>
<Citation>Mehrpour, M., Esclatine, A., Beau, I., & Codogno, P. (2010). Overview of macroautophagy regulation in mammalian cells. Cell Research, 20(7), 748-762. https://doi.org/10.1038/cr.2010.82</Citation>
</Reference>
<Reference>
<Citation>Meng, Q., & Cai, D. (2011). Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. Journal of Biological Chemistry, 286(37), 32324-32332. https://doi.org/10.1074/jbc.M111.254417</Citation>
</Reference>
<Reference>
<Citation>Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069-1075. https://10.1038/nature06639</Citation>
</Reference>
<Reference>
<Citation>Mizushima, N., & Yoshimori, T. (2007). How to interpret LC3 immunoblotting. Autophagy, 3(6), 542-545. https://doi.org/10.4161/auto.4600</Citation>
</Reference>
<Reference>
<Citation>Nisbet, J. C., Sturtevant, J. M., & Prins, J. B. (2004). Metformin and serious adverse effects. Medical Journal of Australia, 180(2), 53-54. https://doi.org/10.5694/j.1326-5377.2004.tb05796.x</Citation>
</Reference>
<Reference>
<Citation>Ost, A., Svensson, K., Ruishalme, I., Brannmark, C., Franck, N., Krook, H., … Stralfors, P. (2010). Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Molecular Medicine, 16(7-8), 235-246. https://doi.org/10.2119/molmed.2010.00023</Citation>
</Reference>
<Reference>
<Citation>Pernicova, I., & Korbonits, M. (2014). Metformin-Mode of action and clinical implications for diabetes and cancer. Nature Review Endocrinology, 10(3), 143-156. https://doi.org/10.1038/nrendo.2013.256</Citation>
</Reference>
<Reference>
<Citation>Rovira-Llopis, S., Banuls, C., Apostolova, N., Morillas, C., & Hernandez-Mijares, A. (2014). Is glycemic control modulating endoplasmic reticulum stress in leukocytes of type 2 diabetic patients? Antioxidants & Redox Signaling, 21(12), 1759-1765. https://doi.org/10.1089/ars.2014.6030</Citation>
</Reference>
<Reference>
<Citation>Rovira-Llopis, S., Diaz-Morales, N., Banuls, C., Blas-Garcia, A., & Polo, M. (2015). Is autophagy altered in the leukocytes of type 2 diabetic patients? Antioxidants & Redox Signaling, 23, 1050-1056. https://doi.org/10.1089/ars.2015.6447</Citation>
</Reference>
<Reference>
<Citation>Rubinsztein, D. C., Mariño, G., & Kroemer, G. (2011). Autophagy and aging. Cell, 146(5), 682-695. https://doi.org/10.1016/j.cell.2011.07.030</Citation>
</Reference>
<Reference>
<Citation>Saitoh, T., Fujita, N., Jang, M. H., Uematsu, S., Yang, B. G., … Akira, S. (2008). Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature, 456(7219), 264-268. https://doi.org/10.1038/nature07383</Citation>
</Reference>
<Reference>
<Citation>Samuel, S. M., Ghosh, S., Majeed, Y., Arunachalam, G., Emara, M. M., Ding, H., & Triggle, C. R. (2017). Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochemical Pharmacology, 132, 118-132. https://doi.org/10.1016/j.bcp.2017.03.001</Citation>
</Reference>
<Reference>
<Citation>Uchizono, Y., Alarcon, C., Wicksteed, B. L., Marsh, B. J., & Rhodes, C. J. (2007). The balance between proinsulin biosynthesis and insulin secretion: Where can imbalance lead? Diabetes, Obesity and Metabolism, 9(S2), 56-66. https://doi.org/10.1111/j.1463-1326.2007.00774.x</Citation>
</Reference>
<Reference>
<Citation>Yun, C. W., & Lee, S. H. (2018). The role of autophagy in cancer. International Journal of Molecular Sciences, 19(11), 3466-3484. https://doi.org/10.3390/ijms19113466</Citation>
</Reference>
<Reference>
<Citation>Zhang, Y., Zeng, X., & Jin, S. (2012). Autophagy in adipose tissue biology. Pharmacological Research, 66(6), 505-512. https://doi.org/10.1016/j.phrs.2012.09</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Bhattacharya, Debalina" sort="Bhattacharya, Debalina" uniqKey="Bhattacharya D" first="Debalina" last="Bhattacharya">Debalina Bhattacharya</name>
</noRegion>
<name sortKey="Bhattacharyya, Maitree" sort="Bhattacharyya, Maitree" uniqKey="Bhattacharyya M" first="Maitree" last="Bhattacharyya">Maitree Bhattacharyya</name>
<name sortKey="Chowdhury, Subhankar" sort="Chowdhury, Subhankar" uniqKey="Chowdhury S" first="Subhankar" last="Chowdhury">Subhankar Chowdhury</name>
<name sortKey="Dutta, Moumita" sort="Dutta, Moumita" uniqKey="Dutta M" first="Moumita" last="Dutta">Moumita Dutta</name>
<name sortKey="Karmakar, Parimal" sort="Karmakar, Parimal" uniqKey="Karmakar P" first="Parimal" last="Karmakar">Parimal Karmakar</name>
<name sortKey="Mukhopadhyay, Mainak" sort="Mukhopadhyay, Mainak" uniqKey="Mukhopadhyay M" first="Mainak" last="Mukhopadhyay">Mainak Mukhopadhyay</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000026 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000026 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32237184
   |texte=   The protective role of metformin in autophagic status in peripheral blood mononuclear cells of type 2 diabetic patients.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32237184" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020